Search results

1 – 2 of 2
Article
Publication date: 6 April 2023

Yongxiong Li, Junying Hu and Xiankang Zhong

This study aims to shed light on the corrosion behavior of X80 steel when sulfate-reducing bacteria (SRB) and permeating hydrogen interact.

Abstract

Purpose

This study aims to shed light on the corrosion behavior of X80 steel when sulfate-reducing bacteria (SRB) and permeating hydrogen interact.

Design/methodology/approach

In this study, electrochemical tests were conducted between 25 and 55 °C, and the surface morphology of the specimen was observed using scanning electron microscopy and three-dimensional photos. The composition of the oxide film was characterized by X-ray photoelectron spectroscopy (XPS).

Findings

Under the condition of 6 MPa simulated natural gas (15% H2), the content of S-containing compounds (FeS and FeSO4) in the corrosion products on the surface of the specimen decreases from 60.8% to 54.4%. This finding indicates that hydrogen permeation inhibits the metabolic processes of SRB in this environment. By comparing the hydrogen-uncharged specimen, it was found that under the condition of 6 MPa simulated natural gas (15% H2) hydrogen charging, the uniform corrosion on the X80 surface was weakened, and the protection of the oxide film on the specimen surface in this environment was better than that without hydrogen charging.

Originality/value

To the best of the authors’ knowledge, most of these existing studies have focused on the effect of hydrogen on the mechanical properties of materials and very little is known about corrosion behavior in the hydrogen environment. In this study, a self-designed small gas phase hydrogen charging device was used to study the X80 surface corrosion behavior in the environment of the H2-doped natural gas pipeline.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 June 2022

Rong Wang, Yongxiong Chen, Xiuqian Peng, Nan Cong, Delei Fang, Xiubing Liang and Jianzhong Shang

Three-dimensional (3D) printing provides more possibilities for composite manufacturing. Composites can no longer just be layered or disorderly mixed as before. This paper aims to…

Abstract

Purpose

Three-dimensional (3D) printing provides more possibilities for composite manufacturing. Composites can no longer just be layered or disorderly mixed as before. This paper aims to introduce a new algorithm for dual-material 3D printing design.

Design/methodology/approach

A novel topology design method: solid isotropic material with penalization (SIMP) for hybrid lattice structure is introduced in this paper. This algorithm extends the traditional SIMP topology optimization, transforming the original 0–1 optimization into A–B optimization. It can be used to optimize the spatial distribution of bi-material composite structures.

Findings

A novel hybrid structure with high damping and strength efficiency is studied as an example in this work. By using the topology method, a hybrid Kagome structure is designed. The 3D Kagome truss with face sheet was manufactured by selective laser melting technology, and the thermosetting polyurethane was chosen as filling material. The introduced SIMP method for hybrid lattice structures can be considered an effective way to improve lattice structures’ stiffness and vibration characteristics.

Originality/value

The fabricated hybrid lattice has good stiffness and damping characteristics and can be applied to aerospace components.

Details

Rapid Prototyping Journal, vol. 28 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2